
However, the capillarity of the soil has the greatest effect on the width of the irri- 
gated area. It is evident from the last division of Table 1 that L increases by a factor of 
27.2 in the first series with an increase in the parameter h v from 0.i to 0.89. It should 
be noted that at h v z 0 and h v z T - H, the radius of capillary flow exceeds the height of 
capillary rise h v. Meanwhile, the largest difference is reached at values of h V close to 
T -- H. Thus, in the case h v = 0.89, L = 2.7132 and, thus, L/h v = 3.0. As a result, the 
substantial value of horizontal absorption noted in [i, 5]-even for low-capillarity soils - 
is confirmed to exist. Calculations showed that an increase in the head H leads to an 
even greater spread. For example, in the second series of Table 1 with h v = 0.69, we obtain 
L/h v = 3.7. As regards the flow rate, it changes by 37 and 27% for the values of h v shown 
in the third division of Table i. 

Let us follow the effect of the depth of the high-permeability layer at D = 0.3 and 
h v = 0.i, fixing the value T - H - h v = 0.8. The results of the calculations are shown in 
Table 2. It is evident that the capacity of the layer nearly ceases to affect the radius of 
capillary flow at T > 5. At large values of T, the last two values of L differ from one 
another by no more than 1.5%. The effect of T on flow rate turns out to be somewhat greater; 
the latter can be considered negligible at T > 7. 

We thank V. N. Emikh, for his useful observations on the results obtained in the present 
study. 
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FINITE RATE OF RADIANT HEAT TRANSFER IN A GRAYBODY 

IN THE PRESENCE OF HEAT SOURCES (SINKS) 

A. S. Romanov and T. A. Sanikidze UDC 536.23 

Different intensive heat-transfer processes which take place in the presence of signi- 
ficant temperature gradients are currently being discussed in the literature. The study of 
such processes is complicated by the need to make allowance for the variable thermophysical 
properties of the substance being investigated. This applies in particular to radiant heat 
transfer. Here, the main characteristic of the substance is the mean free path of the radia- 
tion, which depends appreciably on temperature [i]. 

Radiant heat transfer is described by nonlinear integrodifferential equations in accor- 
dance with the nonlocal character of interaction of radiation with a substance [i, 2]. In 
many important cases, it is sufficient to limit the investigation to a graybody approxima- 
tion [i], assuming that the absorption coefficient is independent of the spectral composi- 
tion of the radiation. In the event of planar symmetry, the integrodifferential equation 
has the following form in dimensionless variables [I, 2] in the presence of heat sources 
(sinks) 
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OEot -- z4~'k(U-T 4) d-Q, U= ~2 Sldu" (0 .1)  
- - 1  

Here, E(T) >- 0 [E(0) = 0] is the specific energy of the substance, being a monotonically in- 

creasing function of temperature; T(x, t) _> 0 is the temperature of the substance; x e R I is 
the space coordinate along which heat is transmitted; t > 0 is time; U(x, t) _> 0 is the vol- 
ume density of radiant energy; k = k(T) is the coefficient of absorption of radiation by the 
substance [0 < k(T) < ~ at 0 < T < =, k(0) = 0]; Q(T) is a function of the heat sources 
(sinks) [Q(0) = 0]; K 2 = (L/s L is the characteristic dimension of the region heated by 
radiation; ~ is the characteristic mean free path of the radiation; l(x, t, D) is the inten- 
sity of the radiation, determined from the formula 

I +  = ~ k i T  (~, t)] (~, t) exp - -  [x 

- - o o  

r i ] • I P (x, D I 
f = - -  k [ T ( ~ ,  t)] T a (~ , t )  exp - -  ' d~, ~ < O, 

(z, ~) = • .t k [T (e, t)] P de, 
9C 

where ~ = cos %,; 6, is the angle between the direction of the x axis and an arbitrarily 
chosen direction of radiation (0 <- 8, <_ ~). It should be noted that Eq. (0.2) is valid if 
the condition of finiteness of the temperature increase at Ix[ § co is satisfied [i], thus en- 
suring the existence of improper integrals in definitions (0.2) [for example, T(x, t) < M, 
M = const, 0 < M < ~]. 

The passage to the limit 2 _> oo in (0.i) signifies the transition to the approximation 
of radiant heat transfer. In this approximation, the problem reduces to the analysis of a 
quasilinear differential equation of the parabolic type [3]. This equation turns out to be 
nonlinear, even if the absorption coefficient k(T) = const > 0. It was found in [3] that 
intensive local heat release may result in the transfer of heat in the form of a thermal wave. 
The front of this wave strictly delineates the boundary between the regions of cold and hot 
substance. In physical terms, the presence of the frontal surface of the thermal wave means 
that the velocity of propagation of thermal disturbances is finite. The effect of sources 
(sinks) on the propagation of thermal waves has been studied in many different investigations 
that cannot be discussed here. We note only [4], which can serve as an introduction to the 
present problem. 

The sources and sinks in radiant heat transfer may be different in nature. The release 
or removal of heat is possible in exothermic and endothermic chemical reactions and phase 
transformations in matter [i, 5, 6]. The cooling of a substance due to volumetric de-exci- 
tation is also to be considered. This phenomenon is connected with the existence of "trans- 
parent windows" in a cold substance, i.e., frequency intervals for which the mean free path 
of the radiation in the cold substance is large. Along with these factors, it is possible 
to approximately account for energy losses by the substance by introducing an appropriate 
s ink. 

The author of [8] studied Eq. (0.I) with Q -= 0 and obtained necessary conditions for 
the existence of frontal surfaces [the main requirement being the condition of unboundedness 
of the function k(T) + ~ at T § 0]. Below, we analyze the effect of heat sources (sinks) 
Q ~ 0 on the problem. 

I. Simple Wave. First we will examine a particular solution to Eq. (0.i) of the sim- 
ple-wave type. Let T = T(N), I = I(U, ~) (~ = x - vt, v = const # 0). Then Eq. (0.i) re- 
duces to the form 

u dz 2 • 

Here, W n = S exp (--y~)~-ndT; n = 0, i, 2 .... is an integral exponential function [9]; z = 
1 

<2 I k d ~  i s  t h e  o p t i c a l  t h i c k n e s s  o f  t h e  s u b s t a n c e  [ f o r  t h e  s a k e  o f  b r e v i t y ,  t h e  a r g u m e n t s  
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are omitted in (i.i) and the subsequent discussion). Equation (i.i) must be augmented by 
boundary conditions at z = ~ or z = -~. For the sake of determinateness, we put 

T = 0, I = 0:atz = ~. (1.2) 

Integrating (i.i) with allowance for (1.2), we obtain the equation 

v E  =-~fi T ~ s g n ( z _ ~ ) W o ( [ z _ ~ l ) d ~  ~ d~. ( 1 . 3 )  

Integrating (1.3) twice, we obtain the relation 

;i i v E d e d ~ = - - f f -  ~ , 

+ - U  , 
z z ~  

Using familiar inequalities between integral exponential functions [9], we can write W4(lz - 
$I) = a(Iz - $I)W2([ z - ~I) ~(I z - g[) e [1/3, i]. Allowing for this relation, using the 
mean-value theorem, and employing (1.3), we write Eq. (1.4) as 

( 1 . 5 )  

z ~  z z 

,) ; . J  ~2 k ~- 
z ~  

I t  should be no ted  t h a t  Eq. ( 1 . 5 )  i s  c o n v e n i e n t  f o r  a s y m p t o t i c  a n a l y s i s  of  t he  s o l u t i o n  a t  
z + ~, since it involves only integration within the limits of the ray ~ �9 [z, ~]. 

We are interested in the frontal solutions of Eqs. (0.i) or (1.5). Such solutions are 
characterized by the presence in the plane x, t of interfaces (solution fronts) which strict- 
ly delimit the region ~+ = {(x, t) : T(x, t) > 0} and the background ~0 = {(x, t) : T(x, t) 
0} [8]. The complete solution of Eq. (1.5) can apparently be obtained only by numerical 

methods. 

It follows from physical considerations that the necessary conditions for continuity 
of the temperature T, volume density of radiant energy U, and intensity I must be satisfied 
at the points of the curve x = xf(t) (wavefront). 

We will examine the solution T(~) of Eq. (1.5) near the front ~ = qf(t), assuming that 
the front exists. For the sake of definiteness, we put T(4) > 0 at ~ > Of and T(~) ~ 0 at 

~ ~f; we also let E = T, k = T-~, Q = qT~, where y, ~ > 0, and q are arbitrary constants. Mean- 
while, it follows from physical considerations that ? < 4 [i]. (Here, it is appropriate to 
note that for volumetric de-excitation phenomena, the source can be considered proportional 
to T$, ~ ~ I. If the "transparent windows" correspond to the Rayleigh--Jeans frequency re- 
gion'for the characteristic heating temperature, then ~ : I. This is the very situation re- 
alized in the case of a thermal explosion in air [i]. Other situations are also possible 

[i0].) 

We will assume that the asymptotic representation of T(q) at ~ § nf - 0 is determined 
by the expression [4] 

T(q) ~ 0 ( q / -  ~)% o, 0 = const > 0 .  ( 1 . 6 )  

Returning to the physical variable ~ in Eq. (1.5) and inserting (i.6) into this equation, we 
obtain the algebraic equation 

vai(qs--q)~(1-~)+~= vS*001s--~)r qa~(qi--~])~+l-~ (1.7) 
+ a~(q~--~l)~(~-v)+~+ q a ~ ( , ] ~ - - ~ ) ~ ( ~ - i v ) + ~ ,  

where 

• 5 , 0  2 . 
5 , = 5 ( 0 0 ) ;  a 1 = [ ~ ( i _ ? ) + t ] [ r  a i = - - ~ n _  t, 
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• • 
aa = 3 [~ (4 - -  ?) -~ t1' a~ = ((o~ -[- t) [~ (~ - -  ?) ~- 2] [m (~ - -  2?) + 31" 

The character of the asymptotic solution T(n) of Eq. (1.5) near the front is determined 
by the conditions of solvability of Eq. (1.7); for this, it is necessary that at least two 
of the exponents in (1.7) coincide and that the remaining exponents be greater than these~ 
two. By analyzing different variants of relations between the exponents with (nf - D) in 
individual terms of (1.7), we find possible values of ~ and 0 and thus obtain relations for 
the exponents ~ and $. The latter relations determine the structure of the asymptotic repre- 
sentation of the solution in the neighborhood of the front. Thus, it turns out to be possi- 
ble to classify the frontal solutions. 

Let ~ e i. in this case, in the asymptotic representation of the solution ~ = w z ~ i/y, 
0 = 8 1 ~ (K2~/ /~)I/v. We can use Eq. (i.i) to obtain an asymptotic representation for the 
volume density of radiant energy U ~ -(v/~2k)dT/dq. The condition U ~ 0 requires that v > 0, 
which means physically that only a heating wave exists; here, asymptotic representation (1.6) 
is independent of the action of the heat sources q > 0 or heat sinks q < 0. (Similar re- 
sults were obtained in [8] with q ~ 0.) Thus, if ~ e i, then the effect of sources (sinks) 
on the formation of the front of the thermal wave is negligible. Such heat sources (sinks) 
will be called "weak" sources (sinks). 

Now we put 0 < ~ < i. Analysis of Eq. (1.7) shows that, in this case, sources (sinks) 
may have a decisive effect on the formation of the frontal surface. We will call sources 
(sinks) "strong" when 0 < ~ < i. Along with the asymptote established by the exponent m = 
~z, there is yet another possibility: ~ = ~2 ~ i/(i - ~). Asymptotic representation (1.6), 
with ~ = mz at 0 < ~ < i, depends on the sum 7 + ~; here, the expression for the coefficient 
0 in (1.6) has the form 

01, %~+~>I, 
0= 02 , ~ + ~ < 1  

(8 2 ~ { 2u ~ (y + ~)]}z/y). The condition U e 0 requires that q < 0, v > 0. 

Another construction of asymptotic representation (1.6), with ~ = ~2, can be realized 
for all values 0 < y < 4. Then the multiplier 0 is determined from (1.7): 0 = 8 3 ~ [q(l - 
$)/v]Z/(1-$). It follows from this expression that sign v = sign q, i.e., the asymptotic re- 
presentation being examined is possible with the action of either sources (q > 0, v > 0) or 
sinks (q < 0, v < 0). Thus, both heating (v > 0) and cooling (v < 0) waves are possible. 

It is interesting to note that for strong sources (sinks) a front appears even for y = 
0, i.e., in the absence of degeneracy of the absorption coefficient at T § 0: 0 < k(0) < ~. 

For greater clarity, Table i shows possible regimes of localization of thermal disturb- 
ances with the corresponding values of ~ and 0 in asymptotic representation of the solution 
T(q) (1.6) as a function of the parameters y and $. For completeness, the Table also shows 
the results for the case y + $ = i. 

2. Example of an Analytically Closed Solution. We noted above that serious complica- 
tions are encountered when an attempt is made to study Eqs. (i.i) or (1.5) analytically. 
Thus, to confirm the conclusions made above, we will present an example in which the solu- 
tion of Eq. (0.i) can be obtained analytically in closed form. In accordance with [ii], we 
put E = T 4. We can also apply Q = x2k(aT~ @ bdT4/dz) (a, b are arbitrary constants). Then 

the variables are separated in Eq. (0.i). As a result, we find that the temperature T(n) is 
determined from the equation 

T 

4 ~dT 
0 

w h i l e  t h e  i n t e n s i t y  I i s  f o u n d  f r o m  t h e  f o r m u l a  I = T 4 / ( v p  + 1 ) ,  w h e r e  t h e  c o n s t a n t  f o r  s e -  
p a r a t i o n  of the variables v e (-i, 0) determines the velocity of the thermal wave 

v = - ~ -  l - - ~ l n  1 _ ~ ]  

The sign of the function Q(T) coincides with the sign of the sum c = a + vb. At c > 0, only 
a heating wave is possible (v > 0). At c < 0, both a heating wave (v > 0) and a cooling 
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TABLE 1 

CO 

>0 
0 

I~ < 0  

v+6< i 

4>0 [ q<0 

032 (01 

03 02 

-oT 

v+~=t 

6<I 

q~O [ q<O 

602 

03 

- -  ( 0 2  

03 

v+~>i 

~<i St 

q>O [ q<O q>O q<O 

0 3 Oj 01 01 

Io: J :  
wave (v < 0) are possible, which confirms the conclusions reached above (see Table I). 

3. Asymptotic Representation for the Temperature Near the Front of a Thermal Wave in 
the General Case. The conditions of the existence of the front obtained above for a simple 
wave can also be formulated as necessary conditions in the general case of radiant heat 
transfer in a graybody. 

Let there be the surface x -)x~(t),__ xf ~ dx@/dt ~ 0, this surface being a front, i.e., 
T(x, t) > 0, x < xf(t) and T(x, ~ 0, x e xf(t). Following [12], we differentiate the 
condition E(xf(t), t) = 0 with respect to time aE/at + xfSE/Sx = 0, x = xf(t). We assume 
that this equality is satisfied asymptotically at x + xf(t) - 0 and, having replaced the de- 
rivative aE/at in (0.i), we introduce the relation 

- - ~ j O E / a t  = •  - -  T 4) @ Q, x ~ ~ - -  O. (3. i )  

It is evident from a comparison of (3.1) and (i.i) that they coincide if we put v = xf, ~ = 
x - xf. Thus, the results obtained above for the case of the existence of a front for a 
simple wave apply fully to the case of an arbitrarily moving frontal surface x = xf(t), xf 
0. 

As a result, the presence of heat sources (sinks) may have a significant effect on the 
formation and propagation of fronts of thermal disturbances in radiant heat transfer. 
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